Теплопроводящие материалы

Созданы для эффективного отвода тепла при высоких температурах

Electrolube thermal management products and a PCB
  • теплопроводящая паста без содержания силикона
  • теплопроводящая паста с содержанием силикона
  • Теплопроводящие герметики клеи и адгезивы
  • Заливочные смолы
  • 0.9 to 3.4W/m.K

Электронные компоненты при работе выделяют значительное количество тепла. Неспособность эффективно отвести это тепло от компонента и от изделия в целом приводит к снижению надёжности и сокращению срока эксплуатации

Читать далее > Скачать Таблицу подбора материалов > Скачать брошюру по материалу >

Закон охлаждения Ньютона утверждает, что скорость отдачи тепла пропорциональна разнице температур между нагретым телом и окружающей средой. Поэтому как только температура компонента увеличится и достигнет температуры равновесия, количество отдаваемого тепла в секунду будет равным количеству тепла, вырабатываемому в секунду внутри компонента. Эта температура может быть достаточно высокая, чтобы значительно сократить срок службы компонента или даже привести к неисправности изделия. Именно в таких случаях и необходимо принимать меры по обеспечению теплового режима. Те же соображения относятся ко всему узлу или устройству, в состав которого входят отдельные компоненты, выделяющие тепло.

Компонент отдает тепло в окружающую среду у его поверхности. Теплопередача возрастает с увеличением площади поверхности компонента. Небольшой компонент, выделяющий 10 ватт, достигнет более высокой температуры, чем компонент с близким выделением мощности, но с большей площадью поверхности.

Для этого применяются тепловые радиаторы. Имеющие различные размеры и форму радиаторы могут быть подобраны так, чтобы обеспечить значительное увеличение площади поверхности для максимального рассеяния тепла. Радиаторы обычно присоединяют к компонентам, которые при работе выделяют большое количество тепловой энергии, и таким образом отводят эту энергию от компонента во избежание выхода из строя из-за перегрева.

Тепловые радиаторы доказали свою высокую эффективность, однако для того, чтобы обеспечить полное прилегание и, как следствие, максимальную эффективность, вместе с радиаторами применяются и материалы для обеспечения теплового режима.

Даже после тонкой полировки металлические поверхности имеют некоторую шероховатость. Из этого можно сделать вывод, что при соединении двух металлических поверхностей прилегание окажется не 100%-ным и между ними всегда будет присутствовать воздушный зазор. Заполнение таких зазоров контактным материалом с тепловыми свойствами обеспечивает полное прилегание между двумя поверхностями и, как следствие, лучшую теплопроводность.

Постоянное стремление к миниатюризации изделий в сочетании современными компонентами, потребляющими все более высокую мощность, требуют эффективного обеспечения теплового режима и является важнейшей составляющей как современных, так и будущих разработок в электронике, где лишь одним из примеров является рынок светодиодного освещения. На основе материалов для обеспечения теплового режима также имеются решения для повышения эффективности разработок в области экологически чистой энергии, для фотоэлектрических инверторов, известных особой чувствительностью к температуре, для соединений между тепловыми трубками и емкостью с водой в системах солнечного отопления, для водородных топливных элементов, ветряных электрогенераторов – всё это лишь малая часть примеров.

Теплопроводящие материалы

Субкатегории

Сузьте ваш поиск, выбрав субкатегории для отображения.


Пасты без содержания силикона

Силиконовые пасты

Отверждаемые при комнатной температуре материалы и материалы для соединения

Заливочные смолы

Аксессуары